| $\bigcirc$ | ord     | a       | a     | 0   |
|------------|---------|---------|-------|-----|
|            | Tout pc | our les | scien | Ces |
| $\bigcirc$ |         |         |       |     |

Page 1/14

# SmartCar Réfs. ME-1240 & ME-1241



Introduction

Le Smart Cart sans fil peut être connecté à un périphérique sans fil ou en USB pour se connecter à un ordinateur ou une tablette. Via Bluetooth® (version 4.2 ou ultérieure), ou un micro-câble USB (inclus).

La Smart Cart possède un corps en ABS très résistant, un lanceur à trois positions et des roues presque sans frottement. Il comprend des capteurs intégrés qui mesurent la **force**, la **position**, **vitesse** et **accélération** sur trois axes.

La Smart Cart comprend également une détection de type **gyroscope**, capable de mesurer le mouvement de rotation. La Smartcar peut faire ses mesures sur ou hors d'un banc dynamique. Et suivre et les transmettre ses données sans fil. Pour une identification facile, La Smart Cart est disponible en rouge (ME-1240) ou en bleu (me-1241).

Les dimensions de la Smartcart sont les mêmes que les autres chariots PASCO et elle peut être donc utilisé avec n'importe quelle Banc dynaique PASCO.

La masse est d'environ 0,250 kilogramme (environ 250 Grammes).

Il a des points de fixation aux extrémité.

Des Velcro® pour des collisions inélastiques sur une extrémité. Le pare-chocs magnétique, pièce jointe, et l'accessoire de crochet s'insèrent dans le trou fileté de l'autre extrémité.

Les capteurs intégrés mesurent la force dans la gamme entre -100 newtons (N) et +100 N, accélération dans la plage entre -16g et + 16g (g = ± 9.8 m / s2) et vitesse angulaire jusqu'à ± 245 degrés par seconde (dps). Il Mesure l'accélération en trois dimensions (X, Y etZ).

Le logiciel de collecte de données PASCO peut également montrer l'accélération résultante. L'encodeur sur la roue de la Smart Cart mesure le mouvement à un maximum de 3,0 mètres



Par seconde avec une résolution de 0,2 millimètre (mm). La direction positive du mouvement est la même que l'axe X dans le graphique qui représente l'accélération.





Regarder <u>www.pasco.com/software</u> pour avoir la dernière version des logiciels.



Compatibilités Bluetooth :

| Platforme     | Bluetooth SMART Compatible          |
|---------------|-------------------------------------|
| IOS           | IPAD 3 ET PLUS                      |
|               | IPHONE 4S ET PLUS                   |
|               | IPOD TOUCH 5 ET PLUS                |
| SPARK Element | TOUS MODELES                        |
| ANDROID       | ANDROIDE 4.3 ET PLUS                |
| CHROMEBOOK    | CHROME OS (avec adaptateur PS-3500) |
| MAC OS X      | MEDOLE DEPUIS JUILLET 2011          |
| WINDOWS       | WINDOWS 7 ET PLUS                   |
|               |                                     |



PS-3500 est un adaptateur Bluetooth 4

pour travailler sans fil sur Windows et chromebook.



Connecter le câble micro USB à un port USB ou à une station de charge PS-3501. Puis suivre les indications des LED expliqué ci-dessus.

#### **Information sur le LED**

#### EN SANS FIL :

LED Bluetooth :

ROUGE : le capteur est prêt à être connecté.

VERT : le capteur est connecté.



#### Page 4/14

JAUNE : le capteur fonctionne de manière autonome sans support informatique grâce à sa mémoire interne. (Cette fonctionnalité est réglée à partir du logiciel pour notamment des expériences longues)

<u>LED Batterie :</u>

ROUGE : Batterie faible.

### EN CABLE USB CONNECTE AU PORT USB :

LED Bluetooth :

JAUNE : le capteur fonctionne de manière autonome sans support informatique grâce à sa mémoire interne. (Cette fonctionnalité est réglée à partir du logiciel pour notamment des expériences longues)

LED Batterie :

JAUNE : En charge.

VERT : Chargé.

#### **EN CABLE USB CONNECTE A UN CHARGEUR :**

LED Bluetooth :

ROUGE : le capteur est prêt à être connecté.

VERT : le capteur est connecté.

JAUNE : le capteur fonctionne de manière autonome sans support informatique grâce à sa mémoire interne. (Cette fonctionnalité est réglée à partir du logiciel pour notamment des expériences longues)

LED Batterie :

JAUNE : En charge.

VERT : Chargé.

#### Installation et démarrage sur Sparkvue

1. Allumer votre capteur en appuyant sur le bouton d'alimentation.

6

Une fois allumé, l'indicateur Bluetooth clignote en rouge.

2. Ouvrir L'application Sparkvue.

| $\bigcirc$ | ord     | a       | Ra      | 0   |
|------------|---------|---------|---------|-----|
| $\bigcirc$ | Tout pc | our les | s scien | Ces |

Page 5/14

| _ |  |
|---|--|
| _ |  |
| _ |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |

Si vous travailler sans fil, cliquer sur le symbole Bluetooth



3. Connecter le capteur en cliquant dessus. Avec le câble USB le capteur est automatiquement reconnu et cette étape n'est pas utile.





Page 6/14



NB : si vous avez plusieurs capteurs, l'ordre des capteurs dans la liste d'affichage dépend de son éloignement de l'outil informatique utilisé. Le plus proche en haut de la liste.

4. lancer une mesure.

Choisir la variable que vous souhaitez étudier en cliquant dessus puis appuyer sur démarrer.



#### Page 7/14

|                     |   | SPARKvue                        |            | - 🗆 🗙      |
|---------------------|---|---------------------------------|------------|------------|
| <i>∎:/</i> _\:,1•1• |   |                                 | 8          | <b>¢</b> ? |
| SPARKlabs           |   | Capteurs                        |            |            |
| Créer               | + | Capteur d'accélération sans fil |            |            |
| Expériences         | > | Accélération, X                 | 0,2 m/s/s  | <u>~</u>   |
| Manipulations       | > | Accélération, Y                 | -0,5 m/s/s | <u>~</u>   |
| Ouvrir un fichier   |   | Accélération, Z                 | 9,7 m/s/s  | ~          |
| Stockage en ligne   |   | Accél résultante                | 9,7 m/s/s  | ~          |
|                     |   | Capteur gyroscopique sans fil   |            |            |
|                     |   | Vitesse angulaire, X            | 0,2 rad/s  | ~          |
|                     |   | Vitesse angulaire, Y            | 0,0 rad/s  | ~          |
|                     |   | Vitesse angulaire, Z            | -0,1 rad/s | ~          |
|                     |   | Capteur de force sans fil       |            |            |
|                     |   | Force                           | 0,44 N     | ~          |
|                     |   | Microphone intégré              |            |            |

Le symbole permet d'activer ou de désactiver la prise de mesure d'un ou plusieurs des 3 capteurs présents sur ce capteur.



#### Page 8/14



Vous pouvez vous référer à la notice de Sparkvue pour découvrir toutes les possibilités du logiciel.

Le ZERO (TARE) du capteur de force et d'accélération.

Au début d'une expérience, la mesure du capteur peut ne pas être nulle, lorsque la force ou l'accélération devrait, en fait, être nulle. C'est un comportement normal qui est corrigé lorsque vous faite le zéro (ou tare) du capteur.



- Pour cela aller dans
- Puis « Configurer Capteur »

| Outils Expérience      | ? |
|------------------------|---|
| Gérer les données      |   |
| Étalonner capteur      |   |
| Configurer capteurs    |   |
| Données calculées      |   |
| Propriétés des données |   |
| Carte de mesure        |   |
| Terminé                |   |
|                        |   |



## Page 9/14

 Puis choisir le capteur que vous souhaitez mettre à zéro puis vous pouvez mettre à zéro automatiquement à chaque départ d'expérience ou de le faire manuellement en cliquant sur « faire le zéro ».

| Configuration capteurs      |                                    | Editer les propriétés des données:  |    |
|-----------------------------|------------------------------------|-------------------------------------|----|
| Capteurs                    | Editer les propriétés des capteurs | Etalonner capteur                   |    |
| Editer les p                | Capteur d'accélération sans fil    | Zéro automatique au démarrage : Oui |    |
| Activer/Désactiver capteurs | Capteur gyroscopique sans fil      | Faire la záro                       |    |
| Activer/Desactiver capteris | Capteur de force sans fil          | Faire le Zero                       |    |
|                             |                                    |                                     |    |
|                             |                                    |                                     |    |
|                             |                                    |                                     |    |
|                             |                                    |                                     |    |
|                             | arminá                             |                                     |    |
| remine                      |                                    | Annuler                             | OK |

Installation et démarrage sur Capstone

1. Allumer votre capteur, en appuyant sur le bouton d'alimentation.

Une fois allumé, l'indicateur Bluetooth clignote en rouge.

2. Ouvrir le logiciel Capstone.





#### Page 10/14



Pour travailler sans fil, Ouvrir l'outil « Interface Réglage ».



3. Connecter le capteur en cliquant dessus. Avec le câble USB le capteur est automatiquement reconnu et cette étape n'est pas utile.

L'indicateur Bluetooth clignote, alors, en vert.



Page 11/14



NB : si vous avez plusieurs capteurs, l'ordre des capteurs dans la liste d'affichage dépend de son éloignement de l'outil informatique utilisé. Le plus proche en haut de la liste.

Le symbole permet d'activer ou de désactiver la prise de mesure d'un ou plusieurs des 3 capteurs présents sur ce capteur.

#### 4. lancer une mesure.

Choisir le type d'affichage, en faisant un double-clique sur l'icône souhaité (par exemple : graphique), vous pouvez également faire un glisser-déposer.



Vous pouvez, alors, cliquer sur « SELECTIONNER UNE MESURE » et choisir par exemple la force



Enfin, cliquer sur « enregistrer » pour démarrer les mesures.



## Page 12/14



# Le ZERO (TARE) du capteur de force et d'accélération.

Au début d'une expérience, la mesure du capteur peut ne pas être nulle, lorsque la force ou l'accélération devrait, en fait, être nulle. C'est un comportement normal qui est corrigé lorsque vous faite le zéro (ou tare) du capteur.

Sur Capstone vous avez deux possibilités de faire le zéro.

- Sur la barre d'outils du bas, cliquer sur « Taux commun »
- Puis choisir le capteur que vous souhaitez mettre à zéro
- Puis cliquer sur l'outil de mise à zéro







Seconde possibilité :

- Dans interface/réglage, aller dans les paramètres du capteur que vous utiliserez.



- Puis cliquer sur « Mettre à zéro le capteur » ou cocher la case « Mettre à zéro les mesures du capteur lors du départ » pour ne pas avoir besoin de le refaire.

Page 13/14

# Page 14/14

# **Spécification**

| Capteur : FORCE     | Valeur             |
|---------------------|--------------------|
| Gamme de mesure     | ±1000 newtons (N)  |
| Résolution          | 0.01 N             |
| Echantillonnage max | 500 point/secondes |
| Précision           | 1%                 |
|                     |                    |
| Capteur : POSITION  | Valeur             |
| Résolution          | ±0.2 mm            |
| Capteur : VITESSE   | Valeur             |
| Vitesse max         | ± 3 m/s            |
| Echantillonnage max | 500 point/secondes |

| Capteur : ACCELERATION | Valeur                           |
|------------------------|----------------------------------|
| Gamme de mesure        | $\pm 16g (g = 9.8 \text{ m/s2})$ |
| Echantillonnage max    | 500 point/secondes               |